Künstliche Intelligenz unterstützt medizinische Prognosen

Am Beispiel von Covid-19 sagt eine Methode maschinellen Lernens das individuelle Sterblichkeitsrisiko von Patienten voraus

Für Ärztinnen und Ärzte sind es die wohl schwierigsten und belastendsten Entscheidungen: Gerade in der Covid-19-Pandemie müssen sie immer wieder abschätzen, wie hoch das Risiko für Patienten ist, an der Erkrankung zu sterben. Im besten Fall können sie dann die Behandlung anpassen, um die Betroffenen zu retten. Im schlimmsten Fall müssen sie knappe Ressourcen wie Intensivbetten oder lebensrettende Maschinen verteilen. Ein Team um Forschende des Max-Planck-Instituts für Intelligente Systeme hat nun einen Algorithmus entwickelt und mit Methoden des maschinellen Lernens trainiert, um Medizinerinnen und Mediziner mit Vorhersagen der Sterblichkeit zu unterstützen. Der Algorithmus lässt sich auch nutzen, um das Sterblichkeitsrisiko bei anderen Erkrankungen vorherzusagen.

Zugehörige Artikel

News event item green

Andreas Geiger gewinnt Longuet-Higgins-Preis

Zweite hochkarätige Auszeichnung für den „KITTI Vision Benchmark“
Arrow left
Thumb ticker md imgl0231

Grundstein für Cyber Valley Neubau gelegt

Gebäude wird Teil des Innovationscampus in Tübingen
Arrow left
Thumb ticker md sidays22 event 2

Science & Innovation Days 2022

Forschung zum Anfassen
Arrow left